

US009159498B2

(12) United States Patent

Eweka

(10) Patent No.:

US 9,159,498 B2

(45) **Date of Patent:**

Oct. 13, 2015

(54) PREPARATION OF ELECTRODE COMPOSITIONS

(75) Inventor: Emmanuel Imasuen Eweka,

Southampton (GB)

(73) Assignee: QinetiQ Limited (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 219 days.

(21) Appl. No.: 13/813,284

(22) PCT Filed: Aug. 19, 2011

(86) PCT No.: **PCT/GB2011/001233**

§ 371 (c)(1),

(2), (4) Date: Jan. 30, 2013

(87) PCT Pub. No.: WO2012/025708

PCT Pub. Date: Mar. 1, 2012

(65) **Prior Publication Data**

US 2013/0120908 A1 May 16, 2013

(30) Foreign Application Priority Data

Aug. 27, 2010 (GB) 1014317.0

(51) Int. Cl. *H01G 9/00*

H01G 9/04

(2006.01) (2006.01)

(Continued)

(52) U.S. Cl.

(58) Field of Classification Search

USPC 361/502, 503–504, 509–512, 516–519, 361/523–525, 528–529

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,932,586 A 1/1976 Guerrieri 4,247,525 A 1/1981 Voeste (Continued)

FOREIGN PATENT DOCUMENTS

DE 4015147 7/1991 GB 2266179 10/1993

(Continued)

OTHER PUBLICATIONS

Friend et al., "Lithium Sulphite and Some Derivatives", Journal of the Chemical Society, Jan. 1, 1928, pp. 2245-2248.

(Continued)

Primary Examiner — Nguyen T Ha (74) Attorney, Agent, or Firm — McDonnell Boehnen Hulbert & Berghoff LLP

(57) ABSTRACT

The invention relates to processes for the preparation of electrode compositions, especially those intended for use in supercapacitors. A process is provided for preparing lithium sulphite comprising the steps of:—a) introducing H₂SO₃ (aq) into a reaction vessel; b) reacting the H₂SO₃ (aq) with an aqueous suspension of Li₂CO₃ in the vessel to form an aqueous solution of Li₂—CO₃; and c) evaporating the solution to recover Li₂CO₃(s), wherein at least steps a) and b) are conducted under an inert atmosphere. Preferably, in step b) H₂SO₃ (aq) and Li₂CO₃ (aq) are reacted with each other in substantially equimolar amounts. There is also provided a process for forming an electrode material comprising a complexing step of causing lithium sulphite to form SO₃ complexes at active N sites of a nitrogen-carbon structure, in the presence of a selected amount of a sink that absorbs the liberated lithium, so as to form the N:SO3 complexed electrode material. Preferably, the nitrogen-carbon structure is thermally restructured polyacrylonitrile (TR-PAN) or a copolymer thereof.

10 Claims, 6 Drawing Sheets

